Deep Residual Learning for Image Recognition
Abstract - Deeper neural networks are more difficult to train. We present a residual learning framework to ease the training of networks that are substantially deeper than those used previously. We explicitly reformulate the layers as learn- ing residual functions with reference to the layer inputs, in- stead of learning unreferenced functions. We provide com- prehensive empirical evidence showing that these residual networks are easier to optimize, and can gain accuracy from considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [41] but still having lower complex- ity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis on CIFAR-10 with 100 and 1000 layers. The depth of representations is of central importance for many visual recognition tasks. Solely due to our ex- tremely deep representations, we obtain a 28% relative im- provement on the COCO object detection dataset. Deep residual nets are foundations of our submissions to ILSVRC & COCO 2015 competitions1 , where we also won the 1st places on the tasks of ImageNet detection, ImageNet local- ization, COCO detection, and COCO segmentation.
Paper - https://arxiv.org/pdf/1512.03385.pdf
Dataset - https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz